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Abstract—Recent technological advances in high-throughput
data collection give biologists the ability to study increasingly
complex systems. A new methodology is needed to develop and
test biological models based on experimental observations and
predict the effect of perturbations of the network (e.g. genetic
engineering, pharmaceuticals, gene therapy). Diverse modeling
approaches have been proposed, in two general categories:
modeling a biological pathway as (a) a logical circuit or (b) a
chemical reaction network.Boolean logic models can not
represent necessary biological details. Chemical kinetics
simulations require large numbers of parameters that are very
difficult to accurately measure. Based on the way biologists
have traditionally thought about systems, we propose that
fuzzy logic is a natural language for modeling biology. The
Union Rule Configuration (URC) avoids combinatorial
explosion in the fuzzy rule base, allowing complex system
models. We demonstrate the fuzzy modeling method on the
commonly studied lac operon of E. coli. Our goal is to develop
a modeling and simulation approach that can be understood
and applied by biologists without the need for experts in other
fields or “black-box” software.

Keywords— gene function, gene regulation, fuzzy logic,
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I. INTRODUCTION

Technological advances in DNA sequencing [1] have made
it feasible to obtain the entire genetic sequence (genome) of
an organism being studied by biologists. While the genomes
of plants and animals are generally large (10°-10' bases,
0O(10%) genes) and still take months and years to sequence, it
is now possible to generate the draft genome sequence of a
bacterium (10° bases, O(10%) genes) in a matter of days or
even hours. However, the sequence of genes only provides a
“parts list” for the cell. Cell function arises from the
regulatory pathways and networks of the genes and their
protein products: how the parts are assembled and work
together in response to environmental stimuli. This
regulation is very complex, and involves protein-protein and
protein-DNA interactions in response to environmental
effects, with multiple feedback as illustrated in Fig. 1.

We are now in the “Post-Sequencing” era of
biotechnology, characterized by engineering advances
(reviewed in [1]) such as DNA chips and microarrays for
mRNA transcript profiling, high-throughput X-ray and
NMR spectroscopy coupled with computational techniques
for protein structure determination, and protein profiling
with mass spectroscopy and 2-D gel electrophoresis. The
purpose of these technologies is to study an entire network
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Fig. 1. Coding segments of DNA sequences (genes) are transcribed on to
message RNA (mRNA). The mRNA is then translated to the proteins that
perform cellular functions. Regulatory feedback occurs at any of step.

(or “pathway”) of genes, proteins, and biochemical reactions
dedicated to performing a particular function of the cell,
usually in response to some environmental stimulus.
Examples for bacteria include nutrient metabolism, infection
of a host, spore formation, DNA repair, etc. By extension,
the ultimate goal is to look at all the interconnected
networks of the living cell as a whole. Given the complexity
of systems being studied, biologists need a modeling and
simulation framework to make sense of large-scale data and
intelligently design traditional bench-top experiments that
provide the most biological insight.

II. MODELING & SIMULATION IN BIOLOGY

Typically, biologists qualitatively model the systems
they observe, which they describe in text or a diagram (e.g.
description of lac operon below and Fig. 2). The model is
developed and confirmed by experiments that test a specific
hypothesis. While experimental results may be analyzed
quantitatively (e.g. enzyme kinetic assay) or qualitatively
(e.g. protein gel electrophoresis), the conclusion is always
qualitative: a component or connection is added or removed
from the model, and given a linguistic description like
“weak inhibition” or “strongly expressed”. Quantitative
conclusions are avoided, because while results may be
sufficiently internally consistent to support, for example,
curve fitting, they can not be used with results from separate
experiments because of large sources of error. For the same
enzymatic reaction, different experiments may provide
kinetic parameters that vary over 1-2 orders of magnitude.
Reliable measurement requires careful, time-consuming and
costly experiments that do not provide any new scientific
insight. However, these measurements are performed on a
limited set of parameters required for engineering
applications like pharmacology, biological risks of toxin
exposure, and biocatalysts for enzyme production.

As systems become more complex, qualitative “mental”
models become harder to develop and interpret. There have
been numerous computer modeling and simulation methods
proposed over the past 40 years. There are two general
types. One type is a (typically) Boolean network model (e.g.



[2]). For example, if a gene is active, it is given a value of 1.
Boolean relations define state transitions based on different
combinations of active genes. This model is easy to
implement, and it has yielded many useful insights into the
self-organization of chaotic systems. However, it does not
have adequate resolution to model biological systems, since
they often depend on continuously variable quantities and
interaction strengths. The other type of model is defining the
biological system as a network of coupled chemical
reactions, and then simulating those reactions (e.g. [3]). This
requires both experimental parameters and an assumption of
a reaction mechanism. Most often, the simulation consists of
solving differential equations based on Michaelis-Menten
kinetics; recently stochastic reaction simulations have been
used as well [4]. However, as described above, it is very
difficult to obtain reliable kinetic data. At least some
parameters are simply guessed. To obtain these parameters
would require many very difficult and costly experiments
with limited immediate scientific value, in a field where so
many basic questions are still unanswered.

We propose that fuzzy logic is a natural language for
modeling biology. Fuzzy set theory is based on normal set
theory, but fuzzy set membership may range anywhere from
0 (absolutely outside set) through 1 (absolutely inside set).
Fuzzy logic was introduced by Zadeh in 1965 [5] and is
now being actively used to model control systems and
business processes; there are countless papers [6] and
textbooks (e.g. [7]) reviewing theory and applications. Early
in its development, fuzzy logic was suggested as the basis
for linguistic modeling [8]: fuzzy sets representing words
like “low” or “strong” are used instead of numbers to
describe quantities being modeled. Thus, fuzzy logic can be
used to formalize how biology is currently modeled, as well
as to provide a basis for computer simulation. Fuzzy logic
has been applied to modeling complex biochemical
reactions [9], modeling biocatalyst control systems [10], and
microarray data analysis [11]. We propose expanding these

efforts to a broader application of fuzzy logic to gene
regulation.

III. Fuzzy MODELING METHODOLOGY

A general discussion of fuzzy modeling is outside the scope
of this paper (see [5]-[8] and others), so we will focus on
methodology for the gene regulation problem specifically.
In our work, we represent a fuzzy quantity with membership
from O to 1.0 in five sets, {VL, LO, ME, HI, VH}. For
example, a “low, non-negligible” quantity could be

P={(VL,0.2),(LO,09),(ME,0.1), (HL 0), (VH,0) }

If quantitative data is known, it is “fuzzified” into this form.
Fig. 3 shows how a graph of fuzzy set domains defined for
lac enzyme concentration. For another protein with a
different natural concentration range, e.g. the lac repressor,
a different fuzzification scheme is defined. A fuzzy quantity
is “defuzzified” by taking the centroid of the area of the
fuzzification graph defined by the membership functions.

In our models, both quantity and activity level are
important. There is a fixed number of promoters of a gene
(unless it has been genetically engineered), but their strength
may vary. Proteins have two associated variables:
production level and activity. Production level is transient,
but even after proteins are produced they remain functional
until deactivated or decayed. Protein activity is affected by
production level, but also by decay by proteases,
interactions with other proteins and chemicals, and
environmental conditions For example, lac repressor protein
activity is inhibited by lactose. Like with control systems,
activity is either fuzzified based on assumptions from
observational data about the effect of perturbing activity
level (e.g. by introducing a genetic mutation).

The fuzzy forms of operators like AND and OR can be
implemented in different ways. In the simplest form, P
AND Q takes the minimum of the membership of P and Q
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Fig. 2. Model of lac operon regulation, showing inhibition and activation of enzymes, substrates, and regulators. Proteins produced by
lacZ and lacY are labeled with gene names. The lacZ enzyme is shown to be “repressing” lactose, in fact it is breaking it down into
glucose and galactose. See text for description.



in each fuzzy set. OR takes the maximum. In another
implementation suitable for modeling, AND is a product of
memberships and OR is a sum. In both of these (but not all)
implementations, IF P THEN Q is synonymous with AND.

A typical node of a fuzzy model has N inputs and one
output, i.e.

IF P, AND P, AND P, AND ... AND P, THEN Q

If the inputs P; have M fuzzy sets, this requires a rule base
with M™ rules, e.g. a rule for (VL) AND (VL) AND (VL)...,
another rule for (LO) AND (VL) AND (VL)..., etc. If we
want to model the production level of a protein that depends
on the strength of two promoters, translation rate,
temperature, and 5 regulatory proteins, this requires 5° =
1,953,125 rules! The most common solution is clustering
variables. While clustering is certainly useful in combining
proteins that are co-regulated, as identified from microarray
experiments for example, it defeats the purpose of a
reasonably detailed gene regulation model.

Recently, Combs ([7]-Appendix, [12]) proposed a
solution to the “curse of dimensionality” called the Union
Rule Configuration (URC). In this configuration, the above
node would instead be written as

(IF P, THEN Q) OR (IF P, THEN Q) OR ... (IF Py THEN Q)

This form now only requires M*N rules, or in our example
5%9 = 45 rules. Not only is rule evaluation computationally
feasible, but mining data to obtain the rule base can be done
very quickly using conventional algorithms. Fig. 4 shows
the URC rule base for the lac operon model. In addition,
rules can also have weights that multiply the consequent
membership. Weighting rules lets our model distinguish
between strong and weak interactions.

Despite its advantages, the URC remains controversial,
since it is likely not equivalent to the original formulation in
fuzzy logic (they are in classical logic), so past rigorous
proofs do not necessarily apply. However, the URC
succeeds as a heuristic method in a number of different
problems, and we have used it for our biological models.

IV. IMPLEMENTATION — LLAC OPERON

The most studied gene regulation system is the lac operon
(illustrated schematically in Fig. 2) of the bacterium E. coli.
The operon is a prototype for most genetic regulatory
systems in bacteria, in that it involves a group of genes
regulated together by one or two stimuli. Regulation in plant
and animal cells is generally more complex. We will
provide a brief overview here, but the lac operon is
described in detail in any introductory biochemistry or
molecular biology textbook (e.g. [13]).

Generally, E. coli and similar bacteria use glucose from
the surrounding environment as their source of energy.
However, when lactose is available, the cell will draw it
through its membrane and then break it down to glucose.
This process is particularly favored when there is a shortage

of glucose. The lac operon is a genetic program that
implements this regulation. It consists of four genes and a
number of protein binding sites clustered near each other in
the E. coli chromosome. The genes and their protein
products are lacl (lac repressor), lacZ (B-galactosidase or lac
enzyme), lacY (B-galactoside permease or lac permease),
and lacA (not involved in lactose regulation). Lac permease
transports lactose into the cell and the lac enzyme breaks it
down to glucose and galactose. When RNA polymerase
(RNAP) binds to the promoter of the gene (labeled P(lacl)
and P(lacZY) in Fig. 2), it catalyzes its transcription.
Promoters have different binding strengths; for example,
lacI has a very weak promoter (due to a non-optimal DNA
sequence for protein binding). The rule IF (promoter
strength) THEN (protein production) refers to the absolute
promoter strength independent of any other regulatory
activity (which is modeled with separate IF/THEN rules).
This allows us to model the effect of modifying the
promoter on protein production, a common genetic
engineering technique.

Dynamic regulation results from protein binding to
operator sites near the promoter. When RNAP binds to the
promoter, it has to travel down the DNA to transcribe the
lacZ and lacY genes. Lac repressor can bind to operators
just past the promoter, and block the RNA polymerase.
When there is lactose present in the cell, it prevents lac
repressor from blocking RNAP. We model this as inhibition
of lac repressor activity. After lac enzyme consumes all the
lactose, the repressor again binds to the operator, production
from lacZ and lacY ceases, and eventually proteases
degrade remaining lac enzymes. Thus, the lac operon is
controlled by negative feedback. Additional regulation is
provided by glucose. Glucose inhibits lac permease (lacY)
activity to prevent lactose entry to the cell. It also inhibits
cAMP, which binds (in conjunction with CRP) to an
operator near P(lacZY). When cAMP is bound, it enhances
production from the lacZ and lacY genes.

The proteins and sugars are all fuzzified on different
domains, since they are present in different quantities. For
example, Fig. 3 shows the domain of lac enzyme. This
fuzzification is based on the known result that upon strong
induction, 6.6% of bacterial protein mass is the enzyme. We
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Fig. 3. Fuzzification of lac enzyme concentration, relative to total cell
protein mass. The definition of VL is hidden to the left of LO.



TABLE 1
URC FUZZY RULE BASE FOR LAC OPERON

lacl production|

P(lacl) strength VL LO ME |HI VH
lacl activity

lacl production VL |LO [ME [HI VH

lactose (in cell) VH |ME |LO O |VL

protease VH |HI HI LO |VL
cAMP activity

glucose v [m ve o v
lacY, lacZ production

P(lacZY) strength VL |LO |[ME [HI VH

lacl activity VH |HI o |1 W

cAMP activity VL LO HI Hi VH
lacY activity

lacY production VL LO ME |HI VH

glucose VH [HI ME |LO LO

protease VH _|HI Jull LO JVL
lacZ activity

lacZ production VL LO ME |HI VH

protease VH _|HI Jull LO JVL
lactose (in cell)

lactose (outside cell) VL LO ME |HI VH

lacY activity VL |LO |ME [HI VH

lacZ activity VH |HI ME JLO VL

use units normalized to cell mass because it is constantly
growing as it consumes nutrients. Lac permease production
is at half the rate of lac enzyme, so it is modeled with the
same fuzzy rules but defuzzified over a domain with
concentrations half as large as for lac enzyme. When
numerical parameters are available, variables may be
defuzzified at any point in a simulation and normal kinetic
equations can be solved. This can be useful for more
realistically modeling protease activity, for example. Table
1 shows the basic URC fuzzy rule base (unweighted) for the
lac operon (proteins are identified by their gene names, i.e.
lacI = lac repressor).

We observe the expected pattern of rapid lac enzyme
production upon addition of extracellular lactose, followed
by decay over time as the extracellular lactose is exhausted.
In the absence of any lac permease in the cell there is no
processing of lactose, however even a very low quantity
leads to some lactose entering and lac enzyme being
produced. This is an effect that can not be modeled with
Boolean variables, since they can only represent the absence
or presence of a quantity. Using weights, we can also model
the effect of adding substances that induce the lac operon
even more strongly than lactose, like the lac inducer IPTG.

VI. CONCLUSIONS

The lac operon is one of the simplest systems in biology,
though it continues to yield interesting experimental
questions. Other bacterial systems can be modeled in the
same way. For example, we are currently integrating these
modeling techniques in our lab’s study of the virulence
pathway of Yersinia pestis, the bacterium that causes
plague. In general, fuzzy models can be used for:

1) Computer simulation of complex systems. Beyond a
certain system size, predicting the effect of a perturbation on
a system or interpreting the observed outcome of that
perturbation requires computer simulation. The simulation
can also help make artificial modifications to gene circuits
and enhance biological production, build vectors for gene
therapy, etc. A major advantage is that the language of the
simulation uses linguistic terms familiar to practicing
biologists.

2) Hybrid quantitative/qualitative models. Given current and
projected technologies, confident quantitative measurements
will remain difficult. However, there are many cases when
quantitative predictions are required or parameters are
available, thus a modeling framework should be flexible.

3) Regulatory inference from large-scale data. A URC
fuzzy model has a rule base that scales linearly with number
of inputs. Thus, it becomes relatively easy to mine
integrated sets of thousands of data points for gene
regulation rules. Biologists can use this “rough draft” to
develop hypotheses that can be tested experimentally to
develop a more complete and confident model.
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